HOMEWORK \#9 SOLUTIONS

7.2.9. We can write the quadratic form as

$$
Q(x)=x^{T} A x
$$

where

$$
A=\left[\begin{array}{cc}
3 & -2 \\
-2 & 6
\end{array}\right]
$$

This has characteristic equation

$$
(\lambda-2)(\lambda-7)=0
$$

So A has eigenvalues 2,7 which are both positive therefore Q is positive definite.
We have

$$
A-2 I=\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]
$$

so $\mathbf{u}_{\mathbf{1}}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is a unit eigenvector. Similarly we have

$$
A-7 I=\left[\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right]
$$

with unit eigenvector $\mathbf{u}_{\mathbf{2}}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}1 \\ -2\end{array}\right]$. As the eigenvectors $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}$ belong to distinct eigenvalues they are orthogonal so we can construct an orthonormal matrix

$$
P=\left[\begin{array}{ll}
\mathbf{u}_{1} & \mathbf{u}_{2}
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right]
$$

such that

$$
A=P D P^{T}
$$

where

$$
D=\left[\begin{array}{ll}
2 & 0 \\
0 & 7
\end{array}\right]
$$

Taking the change of coordinates $x=P y$ the quadratic form becomes

$$
\tilde{Q}(y)=2 y_{1}^{2}+7 y_{2}^{2}
$$

4.2.15. The auxilary equation is

$$
r^{2}+2 r+1=0
$$

with repeated root $r=1$ so the general form of the solution to the homogeneous equation is given by

$$
y(t)=A e^{-t}+B t e^{-t}
$$

From the initial condition $y(0)=1$ we get $A=1$. From the initial condition $y^{\prime}(0)=-3$ we get $B=-2$. So the solution to the IVP is given by

$$
y(t)=e^{-t}-2 t e^{-t}
$$

4.6.3. We take as out two linearly independent solutions to the homogeneous equation

$$
y_{1}(t)=e^{-t} \quad y_{2}(t)=e^{2 t}
$$

with Wronskian

$$
W(t)=3 e^{t}
$$

The variation of parameters formulae then give us

$$
A^{\prime}(t)=-\frac{2 e^{3 t} e^{2 t}}{6 e^{t}} \quad B^{\prime}(t)=\frac{2 e^{3 t} e^{-t}}{6 e^{t}}
$$

Integrating these we get

$$
A(t)=-\frac{1}{12} e^{4 t}+C_{1} \quad B(t)=\frac{1}{3} e^{t}+C_{2}
$$

so the general solution is given by

$$
y(t)=C_{1} e^{-t}+C_{2} e^{2 t}+\frac{1}{4} e^{3 t}
$$

